
l\rrrrrrrrrrrrrrr
laFrrrrrrrrrrrrrrrrrrrrrrr
tr
l'a

I

Read Me First!

Read Me First!

1 Hints for doing labs
This section is to introduce you to the methods of experimental physics, as well as to
familiarize you with techniques that are common to many of the labs.

The overall outline of a physics lab is:

1. Theoretical description of the phenomenon to be studied.

2. Experimental description of the how the phenomenon can be measured.

3. specific information about the equipment used for measurement.

4. Procedures for making and recording measurements.

5. Analysis of the data to give experimental results.

6. Conclusions and discussion of results.

In the labs that follow, there are 'Pre-lab' exercises and questions to ger you
familiar with the theoretical and experimental basis for the labs; the pre-lab should
be done prior to coming to lab, but not so far ahead of time that you forget what
the lab is about by the time you actually do the lab.

While setting up and doing the lab, you should be asking yourself 'am I getting
consistent results'? 'Where are the errors'? Dashing off some quick calculations and
rough graphs while you are doing the lab can be very useful to let you know when
things aren't going quite right. If you discover problems while you are doing the lab,
you have a chance of correcting the problems, remeasuring, etc. A problem found
later will be much harder to correct.

This is also why you should record as much information as you can about the condi-
tions under which you are doing the lab, the setup, all measurements, etc. Sometimes
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the extra data (even if the procedure doesn,t ask for it) provides
let you untangle what really happened. Don't rely on your memory
down!

Doing your analysis and conclusions will be much easier if you've
analysis during the lab, have written down everything, and given
sources of error while setting up and performing the lab.
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2 Measurements and Errors
Whenever you make a measurement of a quantity, there is inevitably some uncertainty
or 'error' in the measurement.

As an example, suppose that you weigh yourself on a bathroom scale. What you
measure is limited by your ability to accurately estimate fractions between the marks
on the dial of the scale (if an analog scale) or in the number of digits displayed (if a
digital scale). Perhaps the dial is moving slightly (or digits flickering) as you breath
and move slightly, so taking a single measurement will have some uncertainty about
how well it represents an 'average' weight.

In addition, one should ask how well the scale is calibrated: is a precisely 1kg
mass recorded as exactly 1.00kg? or does the scale show (for example) 1.03kg?

All of these (and more) contribute experimental error to your measurement.
One of your goals in these labs is to reduce the amount of experimental error to a
minimum, and another is to quantify the amount of error that inevitably remains.
While all measurements are subject to error, with a good understanding of the sources
and amounts of the error, one can still get results that are a very good estimate of
the underlying 'true' values.

3 Rounding and Significant Fisures
If a friend tells you that they got on the scale and have a mass of 76 kg, one would be
justified in thinking that the friend's 'true' mass is somewhere between Zb.5 kg and
76.5 kg; because one would typically not weigh oneself with tremendous accuracy, and
just round off to the nearest kilogram.

But if the friend tells you that they have a mass of 76.7254kg, one would conclude
that they di'd take extreme steps to measure their mass accurately. Similarly, if they
say that they mass 'about 70 kg' one might conclude that it is only a rough estimate
of their mass, based both on the 'about', and. the fact that the mass is giuul to the
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nearest 10 kg.
In the cases above, one draws conclusions (about the

the extremely accurate mass, about their sanity) based
figures given.

friend's mass, or in the case of
on the number of significant

Significant figures are both a way of roughly indicating the error in a number,
and a simple way of keeping track of how errors in measurements affect the results of
calculations using those measurements.

When you report a value of a measurement, or of a calculation using a mea-
surement, you should round off to the correct number of significant figures. To do
otherwise is to misrepresent the accuracy of your measurements, and is a matter of
scientific integrity rather than just a mathematical shortcut.

But how many significant figures is the right number? You have to round off the
least significant (rightmost) digits, until the rightmost digit is about the accuracy of
your measurement.

As an example, suppose that your friend really measured their mass with an accu-
racy of 100g (0.1kg). Then 76.I254kg is too many significant figures (the accuracy
of 0.1kg is worse than 0.0001kg), and one should round off to 76.1kg. A digit is
'significant' when one's measurements are good enough to detect a change of that
digit.

When reporting a number, the rightmost digits to the right of the decimal point are
assumed to be significant, even if zero: if you report 76.100 kg, it implies a 0.001kg
measurement accuracy. Zeros to the left of the decimal point are assumed to be
significant unless the decimal point is omitted. Thus 700. kg should be taken to mean
'700 kilograms with accuracy of 1 kilogram', while 700kg (note the missing'.') is
'700 kilograms with accuracy 100 kilograms'. That little decimal point makes a big
difference in the assumed accuracy!

The number of 'significant figures' is simply the number of digits that are 'signif-
icant'. For example: 76.1000 has 6 significant figures, 76.1 has three, 70. has two
(notice the decimal point) and 70 has one.

How about a number like '0.00761'? Does it have 5 significant figures, or only 3?
When counting significant figures, one should look at a number as if it is in sci,enti,fi,c

notat'i,on: a number between 1 and 10 multiplied by a power of ten. So 0.00761 in
scientific notation is 7.61x 10-3, and it clearly has three significant figures. You don't
have to use scientific notation everywhere, but it does help you keep the significant
figures correct, and when numbers are very large or small scientific notation helps
prevent you from accidentally dropping or adding a zero.

When doing calculations, one should round off results to the smallest number of
significant figures of the data that went into the calculation. If you measure Joe's mass
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as76.72ks (a sig.fig.) and his acceleration as 2.3 m/s2 (z sig.fig.), the force (F : ma)
on your calculator would give 175.076 kgm/s2 (6 sig.fig.), but the calculation is really
only good to the minimum (2 sig.fig.) of the rdata you put into the calculation. In
this case, you should report aforce of 180kgm/s2 with two significant figures.

One can also explicitly quote the errors in a measurement or calculation: ,Joe,s
mass was measured as 76.72*0.03 kg', but the significant figures of both the measure-
ment and the quoted error should be consistent. In other words, saying that the error
is 0.03 kg doesn't let you quote the measurement as 76.L252345 kg, ut d yol shouldn,t
say the error is 0.0321354 kg unless you've really determined it that accuratelv.

4 Accuracy and Statistical Error
Accuracy refers to the repeatability of a measurement. If you get on a scale 5
times in succession, how different are the measurements of your weight? perhaps
the scale reads 75.3, 75.6, 74.9, 75.0,75.4 kilograms for the five measurements; the
range of values (7a.0kg to 75.6kg) gives you an indication of the accuracy of the
measurements.

When you measure the same thing several times, you can improve accuracy by
taking the average (or mean) of the lf measurements:

(*) _ (1)

measurements of r.
But to quantify the
measurements of r:
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where the '(r)' indicates 'the
For the weighing example

accur &cY, one has to calculate

mean fr', and fr,; are the individual
above, the mean rnass is 75.24kg.
the standard deviation o" of the

01 -
Arr

,i:L
(2),A/-1

by taking (squared) differences of the individual measurements and their overall mean.
Many scientific calculators have built-in functions that will calculate the mean and

standard deviation for you; if so, you can just put in your data and let the calculator
do the work.

The standard deviation calculated for the data above is 0.288 kg, which says that
the accuracy of each of the individual measurements is about 0.J kg. The accuracy
of the mean is simply the standard deviation of individual measurements divided bv
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the square root of the
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(3)

number of measurements:

o(*)
tm'

:"ilHf:H_:1"^": 1": weight measurements shourd be*'ifl1l*ul*':,:"::irY* 
i#;ilffi;:il-HlX.:: reported as 75'2 * 0 1 kg,

and can be reduced uv t"r.,,,s th.ffi;:?';#H:il'*xxl,T.l,j,",r'*t
4.L precision, Systematic Error, and Bias
The precision of your measuremeats is how closely they represent the ,true, 

value

i,.t'i.?',TJ':i:.fi.ffi :Jff ,nlJ,T.il:' u, 
"..u,u.r' one can .r1* u",,

the true value), and precis" *uurur"ments that har 
ry precise (they all differ from

precise, but there is a-tot or,r.ufiur, in the ;";r;;#JJ$ accuracv (the average is
To use our weighi"g u"u*p1u"ug"irr, ,"oo"* ,rrli the scare reads row by b kg. w.could have hightv ieptJautili;-;;"rurements, 

but there wilr arways be a b kg error.The b kg offset in trre r;;;-j; * exampre of a systematic L""o", a, of yourmeasurements are 'systematically'low by t6.'w; louta remove this systematic e*orby calibrating.the scare,-;;;;il* some ,known, 
masses on the scale and recordingffg!:ffi':#:f H-;ft ' :ffiy;;F # J;1.# 3"0* c" u et*.en 

-..Jnu, 
t h e scar e

(There would 
i-1t]',lt **t rv".matic error from how we, known the ,known,masses are' but it would pru.u*Jbry be a *r;-r;;;er error.)similarlv one could ttu* u;.!i ,yrtu-uti. u.r#'rro* tidar effects: the gravita_tional attraction of the *oo" nuoutl a..r.*;l;.;*ight measured. A theoreticar;:til:l]l1"[:'i-!'.'f'at' tt'i'"'i'iu*u*i" 

"rro, 
quitu accuratery, but it,s unrikery to

one particular form of systematic error rs called bias. Bids comes from a system_
,T#"TT"H:.has 

the.effeci 
"io*r,tr* on.', *u*Jul*.r,t, consistentry too hish or

Again with our weighing exampre, suppose that you_weigh yourserf at differenttimes of day' but you ro.g;t to eripty your pockets" before stepping on the scale.sometimes your po"k.t, ur?-*o"rri, **ptv, other times you have some coins in yourpockets that increases your *t*orld weight. n. 
"r.i"tion in how much you have inyour pockets will decrease ttt" .uproaucibitity or trre mJasurements (statisiicar error),but taking the mean of many *;;;.*ents can overcome that. However, there will

H i:*il:f f;TJil;l#;;llii!ft'"L'l* *own as a, s t at is t i car error,,
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still be an overall bias towards larger weights (non-empty pockets always make youheavier' never lighter) that even *uny repeated measurements will not overcome.

Itj:Jr: 
case where careful experimental procedure can reduce or eliminate a source

systematic errors are g€nerally more difficult to eliminate than statistical errors;the first step is tg trv.and identify ,our.., of systematic errors, estimate (throughmeasurement or theory) the size of their :f9.t, then try to remove the errors throughimproved procedures, calibrations, or additionar rneasurements.
You will always have many possible sources of ,yrtu*"tic errors, but the overallerror is nearly always dominated by a single systemaiic error that is largest in magni-tude' so one's effort in reducing systematic error should always be directed towardsthe largest error first: you'll neue, see the systematic error from tides when weighingsomeone unless you first get them to empty their pockets before stepping on the scale.
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